Multi-Tissue Microarray Analysis Identifies a Molecular Signature of Regeneration

نویسندگان

  • Sarah E. Mercer
  • Chia-Ho Cheng
  • Donald L. Atkinson
  • Jennifer Krcmery
  • Claudia E. Guzman
  • David T. Kent
  • Katherine Zukor
  • Kenneth A. Marx
  • Shannon J. Odelberg
  • Hans-Georg Simon
چکیده

The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gastric Cancer MicroRNAs Meta-signature

Gastric cancer (GC) is one of the most common types of cancer and the second leading cause of cancer-associated mortality. Identification of novel biomarkers is critical to prolonging patient survival. MicroRNAs (miRNAs) proved to play diverse roles in the physiological and pathological state in cancers including GC. Herein we were aimed at performing a meta-analysis on miRNA profiling studies ...

متن کامل

Disease signatures are robust across tissues and experiments

Meta-analyses combining gene expression microarray experiments offer new insights into the molecular pathophysiology of disease not evident from individual experiments. Although the established technical reproducibility of microarrays serves as a basis for meta-analysis, pathophysiological reproducibility across experiments is not well established. In this study, we carried out a large-scale an...

متن کامل

Analysis and Computational Dissection of Molecular Signature Multiplicity

Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes...

متن کامل

Convertible limited (multi-) verifier signature: new constructions and applications

A convertible limited (multi-) verifier signature (CL(M)VS) provides controlled verifiability and preserves the privacy of the signer. Furthermore, limited verifier(s) can designate the signature to a third party or convert it into a publicly verifiable signature upon necessity. In this proposal, we first present a generic construction of convertible limited verifier signature (CLVS) into which...

متن کامل

Microarray Analysis Identifies a Unique Molecular Signature of Human Thyroid Cancer Stem Cells

Anaplastic thyroid cancer (ATC) is the most lethal type of thyroid cancer, with a mean survival of six months from the time of diagnosis. Using patient-derived ATC cell lines, we have recently shown that ATC contains a minority population of cancer stem cells that can grow as self-renewing, non-adherent thyrospheres. Compared to bulk tumor cells raised in monolayers, these thyrospheres have inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012